一种基于曼哈顿世界假设的视惯融合SLAM方法
首发时间:2023-01-10
摘要:针对现有的视觉惯性融合SLAM算法在移动机器人低速、匀速运动时IMU加速度可观性不足的问题,以及处于光照变换、弱纹理环境中定位精度下降的问题,本文提出了一种基于曼哈顿世界假设的视觉惯性融合SLAM方法,命名为Manhattan-SLAM。该方法是一种点线融合的视惯SLAM方法,并将曼哈顿世界假设引入视觉SLAM问题,不仅能有效提高结构化场景中视觉SLAM系统的定位精度,还可以实时检测移动机器人的定位状态,提高视觉SLAM系统鲁棒性;同时在Manhattan-SLAM后端设计了基于局部地图的曼哈顿世界约束构建方法,有效降低了位姿图优化中冗余的曼哈顿世界约束。基于EuRoC数据集的实验结果表明,引入曼哈顿世界假设,本文提出的Manhattan-SLAM对比主流的视惯SLAM在结构化场景中具有更好的定位与建图精度。
关键词: 同步定位与建图 曼哈顿世界假设 视惯融合 移动机器人
For information in English, please click here
A Visual Inertial SLAM Method based on Manhattan World assumption
Abstract:Aiming at the problem that the existing VI-SLAM algorithm lacks the observability of the IMU acceleration when the mobile robot is in a state of slow or uniform motion, and the problem of the reduced localization accuracy in the environment of illumination transformation and low texture. This method is a point line fusion VI-SLAM algorithm, and the Manhattan world assumption is introduced into Visual-SLAM problem. It can not only effectively improve the positioning accuracy of the Visual-SLAM system in structured scenes, but also detect the positioning state of the mobile robot in real timeA Visual Inertial SLAM Method based on Manhattan World assumption, and improve the robustness of the Visual-SLAM system; At the same time, a Manhattan World assumption pose constraint construction method based on local map is designed at Manhattan-SLAM back-end pose graph optimization, which effectively reduces redundant Manhattan World assumption pose constraints. The experimental results based on EuRoC dataset show that, by introducing the Manhattan World assumption, Manhattan-SLAM algorithm proposed in this paper has better performance in structured scenes than the mainstream VI-SLAM algorithm.
Keywords: SLAM Manhattan World assumption visual-inertial fusion mobile robot
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
一种基于曼哈顿世界假设的视惯融合SLAM方法
评论
全部评论