基于生成对抗网络的车联网联邦数据增强方法
首发时间:2023-02-08
摘要:随着车联网的广泛应用,车辆也进入了"大数据时代"。但是车辆数据包含了大量用户敏感信息,在使用过程中存在隐私泄露问题。针对此问题,不少学者提出了使用联邦学习技术。然而车联网数据的非独立同分布给联邦学习的应用带来了巨大挑战。因此,针对车联网车辆节点资源有限的特点,本文提出了基于多判别器生成对抗网络的数据增强方案。该方案在车辆客户端利用本地数据训练判别器并上传参数,路侧单元利用聚合的判别器训练生成器,生成器生成数据下发并由车辆自行选择数据进行补充,以生成一个独立同分布数据集。该方案不仅保护了用户本地数据的隐私,还在改善了数据非独立同分布的同时缓解了车辆客户资源受限的问题。实验结果表明,该方案有效的改善了数据非独立同分布带来的全局模型精度下降问题,在不牺牲数据隐私的同时将准确率提升了10%~20%。
关键词: 数据安全与计算机安全 车联网 联邦学习 生成对抗网络 非独立同分布 隐私保护
For information in English, please click here
Federated Data Enhancement Method for Internet of Vehicles Based on GAN
Abstract:With the wide application of the Internet of Vehicles(IoV), vehicles have entered the "big data era". However, vehicle data contains a large number of user sensitive information, so there is privacy disclosure problem in the process of use. To solve this problem, many scholars have proposed to use federated learning technology. However, the non-independent and identically distributed data of the IoV has brought great challenges to the application of federated learning. Hence, in view of the limited resources of vehicle nodes in the IoV, this paper proposes a data enhancement scheme based on multiple-discriminators Generative Adversarial Networks. In this scheme, the local data is used to train the discriminator and upload the parameters at the vehicle client. The RSU uses the aggregated discriminator to train the generator. The generator generates the data and sends it to the vehicle who selects the data to supplement, so as to generate an independent identically distributed data set. This scheme not only protects the privacy of users\' local data, but also improves the non-independent and identically distributed data and alleviates the problem of limited vehicle customer resources. The experimental results show that this scheme effectively improves the global model accuracy degradation caused by non-independent and identically distributed data, and improves the accuracy rate by 10%~20% without sacrificing data privacy.
Keywords: data security and computer security Internet of Vehicles federated learning Generative Adversarial Networks Non independent and identically distributed privacy protection
引用
No.****
同行评议
共计0人参与
勘误表
基于生成对抗网络的车联网联邦数据增强方法
评论
全部评论