融合深层结构特征和表示学习的网络比对算法
首发时间:2023-03-10
摘要:蛋白质-蛋白质相互作用(PPI)网络中包含着大量的未知生物信息,通过网络比对分析PPI网络对可以发现不同物种间未知蛋白质功能,从而进行跨物种知识转移。近年来,已经有大量的网络比对算法被提出,但现有的网络比对算法难以在生物保守性和拓扑保守性之间取得良好的折中。因此,本文提出了一种新的成对PPI网络比对算法EmbAlign。针对现有算法计算拓扑相似性时的局限性,EmbAlign分层次的提取网络中节点的结构特征,并使用网络嵌入的方式将节点嵌入低维向量空间并表示。同时,为了保留生物信息,EmbAlign在比对过程中加入序列相似性。为了验证EmbAlign算法的准确性,本文分别在合成网络和真实网络上进行实验并与现有算法进行对比,实验结果表明EmbAlign可以生成在拓扑指标和生物指标上都优于现有算法的比对结果。
关键词: 网络比对 网络嵌入 节点表示 PPI网络 复杂网络
For information in English, please click here
A Network Alignment Algorithm with Structure Features and Representation Learning
Abstract:Protein-protein interaction (PPI) networks contain a large amount of unknown biological information, and the analysis of PPI network pairs by network alignment can discover unknown protein functions among different species for cross-species knowledge transfer. In recent years, numerous network alignment algorithms have been proposed, but the existing network alignment algorithms are difficult to achieve a good compromise between biological conservativeness and topological conservativeness. Therefore, in this paper, a new pairwise PPI network alignment algorithm EmbAlign is proposed.To address the limitations of existing algorithms in computing topological similarity, EmbAlign extracts the structural features of nodes in the network hierarchically and uses network embedding to embed and represent the nodes in a low-dimensional vector space. Meanwhile, to retain biological information, EmbAlign adds sequence similarity in the matching process. In order to verify the accuracy of EmbAlign algorithm, this paper conducts experiments on synthetic and real networks and compares them with existing algorithms respectively. The experimental results show that EmbAlign can generate results that outperform existing algorithms in both topological and biological metrics.
Keywords: network alignment network embedding node representation PPI network complex network
引用
No.****
动态公开评议
共计0人参与
勘误表
融合深层结构特征和表示学习的网络比对算法
评论
全部评论