基于分布相似性的轻量级个性化联邦学习
首发时间:2023-03-10
摘要:联邦学习(FL)中的传统方法试图在中央服务器的编排下协作学习共享全局模型。然而客户端通常只有有限的通信带宽,并且在数据异构的情况下,学习单一的全局模型可能不适用于所有客户端。这种统计异质性和通信瓶颈是阻碍联邦学习发展的两个关键问题。针对以上问题,本文提出了一种基于分布相似性的轻量级个性化联邦学习框架。在不牺牲数据隐私的前提下,通过分析客户端数据子空间之间的余弦距离,将具有相似分布的客户端分组在一起,以便同一集群中的客户端可以彼此受益;通过应用非结构化修剪,为每个集群寻找一个小的子网,由于稀疏子网的紧凑规模,可以显著降低通信成本。实验结果表明本文的方法优于现有的方法,实现了高达33.73%的推理精度提升、2.33倍的通信成本降低。
关键词: 联邦学习 个性化 聚类 分布相似性 通信瓶颈 数据异构
For information in English, please click here
Lightweight and Personalized Federated Learning via Distribution Similarity
Abstract:Traditional approaches in federated learning (FL) attempt to collaboratively learn a shared global model under the orchestration of a central server. However, clients usually only have limited communication bandwidth, and in the case of heterogeneous data, learning a single global model may not be suitable for all clients. Such statistical heterogeneity and communication bottlenecks are two key issues that hinder the development of federated learning. To solve the above problems, this paper proposes a lightweight personalized federated learning framework based on distribution similarity. Without sacrificing data privacy, clients with similar distribution were grouped together by analyzing the cosine distance between client data subspaces, so that clients in the same cluster could benefit from each other. By applying unstructured pruning to find a small subnetwork for each cluster, the communication cost can be significantly reduced due to the compact size of the sparse subnetwork. Experimental results show that the proposed method outperforms the existing methods, achieving up to 33.73% improvement in inference accuracy and 2.33 times reduction in communication cost.
Keywords: Federated learning Personalization Clustering Distribution similarity Communication efficiency Data heterogeneity
引用
No.****
同行评议
共计0人参与
勘误表
基于分布相似性的轻量级个性化联邦学习
评论
全部评论