基于隐含常识数集与预训练模型的数学应用题自动求解器
首发时间:2023-03-15
摘要:自动求解数学应用题是一项需要将自然语言与数学表达式进行结合的有趣的任务。以往的相关研究尝试引入了端到端的神经网络模型,这些模型在生成表达式模板之后再将问题文本中的数值填入表达式中,对于题目中没有出现而数学表达式存在的数值,这些模型将束手无策。为了解决这个问题,本文在预训练语言模型的基础上提出了一种非常有效的了隐含常识数集模块,隐含常识数集包括题目中没有出现而数学表达式中确实存在并可从题目文本中推断出来的数。该方法可以将隐含常识数值动态地引入数学表达式的上下文表示中。在公开数据集Math23K上的实验结果表明,本文提出的模型准确率达到了77.6%。
For information in English, please click here
An Implicit Numbers and Pre-trained model based Math Word Problem Solver
Abstract:Math word problem solving is an interesting task that needs to bridge the natural language descriptions and formal mathematical equations. Previous research has attempted to introduce end-to-end neural network models that generate expression templates and then fill in the numerical values from the problem text into the expression. However, these models are powerless when it comes to numerical that exist in the mathematical expression but are not explicitly mentioned in the question text. To address this issue, this paper proposes a very effective method called the Implicit Common-Sense Number Set (ICNS) scheme, which can dynamically include implicit common-sense numbers into the context representation of mathematical expressions. The ICNS includes numbers that are not explicitly mentioned in the problem text but can be inferred from it and exist in the mathematical expression. Experimental results on the public datasetMath23K demonstrate that Our model achieves accuracies of 77.6%.
Keywords: Math Word Problem Pre-trained model Implicit Common-Sense Number Set
基金:
引用
No.****
同行评议
勘误表
基于隐含常识数集与预训练模型的数学应用题自动求解器
评论
全部评论