基于可解释性引导CNN的多任务学习模型
首发时间:2023-05-12
摘要:深度学习方法在医学影像的分类和分割任务中表现出色,但是由于决策过程缺乏可解释性,限制了它的临床应用。本文利用可解释方法引导卷积神经网络(CNN)提出一个端到端的、可解释的多任务学习模型(IGMTL)。IGMTL可以完成消化内镜病变图像的识别分类与分割任务。该模型首先利用CNN和可解释方法得到输入图像的注意力图,然后基于注意力图得到输入图像的掩膜图像,接着将掩膜图像送入CNN,最后针对IGMTL模型提出了新的损失函数训练模型。本文基于公开数据集Kvasir中息肉与正常盲肠两类图像来验证IGMTL模型的有效性。对于息肉图像的识别任务, IGMTL的召回率和准确率比未加可解释引导的CNN分别提高4\%和2\%。对于息肉图像弱监督分割任务,IGMTL弱监督分割的IoU比FCM聚类模型提高11.79\%。从弱监督分割的定性结果来看,IGMTL能够较准确的完成息肉图像的弱监督分割任务。因此,IGMTL模型不仅可用于病变图像识别,还可辅助医生的临床诊断,或者指导非专业人士标注消化内镜图像的病变区域。
关键词: 深度学习 可解释性方法 图像分类 图像分割 医学影像
For information in English, please click here
A multi-tasking learning model based on interpretable guided CNN}%\authorCHN{刘佳, 姚兰}%\authorENG{LIU Jia}%\affiliationCHN{% 湖南大学数学学院,长沙 410082 %}%\affiliationENG{% School of Mathematics, University of Hunan, Changsha 410082 %
Abstract:Deep learning method performs well in the classification and segmentation tasks of medical images, but its clinical application is limited due to the lack of interpretability in the decision-making process. This paper uses interpretable methods to guide convolutional neural networks (CNN) to propose an end-to-end, interpretable multi-task learning model (IGMTL). IGMTL can complete gastrointestinal endoscopic lesion image classification and segmentation. The model first uses CNN and interpretability methods to obtain the attention map of the input image, then generates the mask image of the input image based on the attention map, and finally feeds the mask image into the CNN. A new loss function is proposed to train the IGMTL model. This paper verified the effectiveness of the IGMTL model on two types of images, polyps and normal cecum, in the public dataset Kvasir. For the polyp recognition task, the recall and accuracy of IGMTL were 4\% and 2\% higher than those of the CNN without interpretable guidance. For the weakly supervised segmentation task of polyp images, the IoU of IGMTL was 11.79\% higher than that of the FCM clustering model. From the qualitative results of weakly supervised segmentation, IGMTL can accurately complete the weakly supervised segmentation task of polyp images. Therefore, the IGMTL model can not only be used for lesion image recognition, but also can assist doctors in clinical diagnosis or guide non-professionals to annotate the lesion areas of endoscopic images.
Keywords: Deep learning Interpretable method Image classification Image segmentation Medical image
基金:
引用
No.****
动态公开评议
共计0人参与
勘误表
基于可解释性引导CNN的多任务学习模型
评论
全部评论